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Abstract. A new semiclassical adiabatic invariance treatment of ion-molecule reactive collisions is proposed
to investigate the influence of the molecular rotation on the cross-sections and rate constants at very low
temperatures. Within the domain of validity of the adiabatic separation of the ion-molecule radial motion
and the molecular rotation, the method is applicable to linear or symmetric-top molecules, for which the
system is integrable. The correspondence principle is then used to partition the space of the classical action
space into quantum “bins”, each of which corresponds to a specific quantum state. The procedure differs
from the more usual Einstein-Brillouin-Keller (EBK) semiclassical quantization, where each quantum state
is represented by a single point of action space. The results for the linear rigid rotor case, obtained using this
modified semiclassical adiabatic invariance model, are in excellent agreement with the quantum mechanical
methods, even for low rotational levels of the molecule, where the EBK semiclassical quantization fails.

PACS. 34.50.Lf Chemical reactions, energy disposal, and angular distribution, as studied by atomic
and molecular beams – 34.50.Pi State-to-state scattering analyses

1 Introduction

At very low (meV) energies, the cross-sections for exo-
ergic ion-molecule reactive collisions with no activation
barrier are strongly influenced by the anisotropy of the
long-range multipolar ion-molecule interaction. The non-
isotropic component of the interaction couples the rota-
tional states of the colliding molecule at ion-molecule dis-
tances well beyond those for which the chemical reaction
occurs and, as a consequence, reactive rate constants may
exhibit a strong dependence on temperature in the range
from 1 to 100 K.

Of the various theoretical approaches used to take ac-
count of rotational mixing during the collision, the most
successful are those based on the adiabatic separation of
the molecular rotation and the radial ion-molecule motion.
In a quantum mechanical representation of the system,
this leads to the notion of an adiabatic rotational state
and if non-adiabatic coupling can be assumed negligible,
a great simplification of the theoretical model is achieved.
Amongst the methods, which exploit this approach, are
the Perturbed Stationary State (PRS) method [1,2], the
statistical adiabatic capture channel model (SACM) [3–5]
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b UMR 7066 du CNRS

and the adiabatic capture centrifugal sudden approxima-
tion (ACCSA) [6]. It has been subsequently shown [7] that
the ACCSA and SACM methods are identical.

When a semi-classical description of the system is used,
a similar adiabatic separation of the rotational and radial
motion can be achieved by the introduction of adiabatic
invariance [8,9]. Indeed, the notion of adiabatic invariance
is the classical equivalent of the adiabatic representation
used in quantum mechanics. This approach was first pro-
posed by Bates [10] and Sakimoto [11] and successfully ap-
plied by them [12–14] using a semiclassical (EBK) quan-
tization of the rotational levels to investigate reactions
involving both linear and symmetric top molecules.

For temperatures greater than about 100 K, there is
excellent agreement between the semiclassical [12–14] and
ACCCSA [6,15] calculations, but at lower temperatures
the semiclassical method becomes rapidly unsatisfactory
and gives inaccurate results at typical interstellar tem-
peratures of 10–20 K. The failure of the standard semi-
classical method is directly related to the defect of the
EBK semiclassical quantization for low rotational quan-
tum states, especially for j = 0, 1. These defects are not
serious if many excited rotational states of the molecule
are populated initially (such as for molecules with low
rotational constants). But in dilute astrophysical envi-
ronments typical of the interstellar molecular clouds,
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local thermodynamic equilibrium is rarely attained and
most molecules are likely to be in low rotational states. In
this case, the semi-classical methods [10,11] of Bates and
Sakimoto are unreliable at very low temperatures.

The aim of the present work is to remove the major
defect of the EBK quantization in a way consistent with
the classical description of the system. Rather than as-
sume that each initial quantum state of the molecule cor-
responds to some unique classical value of the angular
momentum, we propose to partition phase space in such a
way that each quantum state is represented by a distribu-
tion of classical angular momentum (both in magnitude
and direction).

2 Classical treatment

First of all, we recall briefly how the notion of adiabatic
invariance in an ion-molecule system can be used to sim-
plify the dynamics. The starting point (as in the quantum
adiabatic approximation) is the Hamiltonian of the system
at some fixed ion-molecule distance r:

H(r, θ) = T (θ) +
D

r2
cos θ (1)

where D is the molecular dipole moment and T (θ), the
rotational kinetic energy, is given by

T (θ) =
1
2I

(θ̇2 + ϕ̇2 sin2 θ) (2)

I being the moment of inertia and (θ, ϕ) the Euler angles
describing the orientation of the molecular axis. We may
remark that, under these conditions the Hamiltonian de-
pends parametrically on r but is constant of the motion
for fixed r. That is to say we may write

H(r, θ) = ε(r). (3)

Introducing the conjugate angular momentum pθ, pϕ and
taking account of the fact that ϕ is a cyclic coordinate,
pϕ = constant = M , equation (2) may be written as

T (θ) =
B

�2

(
p2
θ +

p2
ϕ

sin2 θ

)
=
B

�2

(
p2
ϕ +

M2

sin2 θ

)
(4)

where B = �
2/2I is the rotational constant.

The determination of ε(r) as a function of r is achieved
by imposing the condition of adiabatic invariance, which
is valid if the rotation period is short compared to the
time for appreciable changes in the radial motion. In the
present case, where the molecule is assumed to behave
as a rigid linear rotor, there are two adiabatic invariants,
Iθ, Iϕ:

Iθ(r) =
1
2π

∮
pθ(r)dθ =

1
π

θ2∫
θ1

pθ(r)dθ = Iθ(∞) (5)

Iϕ(r) =
1
2π

∮
pϕ(r)dϕ = M (6)

where θ1 < θ2 are the classical turning points of the molec-
ular libration when only a restricted range of angles is ac-
cessible. Of course, if the energy is such that all angles are
classically accessible, the range of integration over θ ex-
tends from 0 to π. Using (3) and (4) we may express pθ in
terms of r, θ by the relation

pθ = �

[
ε(r)
B

− D cos θ
Br2

− M2

�2 sin2 θ

]1/2
· (7)

Introducing the dimensionless quantities

ρ = cos θ x = r

√
B

D
(8)

we may then write (5) in the form

Iθ =
�

πx

b∫
c

(√
f(ρ)

1 − ρ2

)
dρ (9)

where

f(ρ) = ρ3 − ε(r)
B

x2ρ2 − ρ+ x2

(
ε(r)
B

− M2

�2

)
≡ (ρ− a)(ρ− b)(ρ− c). (10)

In the asymptotic limit (x → ∞), the integration (9) can
be carried out analytically to give

Iθ = �

√
ε(∞)
B

− |M |. (11)

It is then seen that for a given initial rotational en-
ergy ε(∞) and a given constant M , we may associate
a specific adiabatic energy ε(r) for a given r. Classi-
cally the energy of a rotor with angular momentum J is
ε(∞) = (B/�2)J2. So we designate the adiabatic energies
as εJM (r). The method to evaluate (9) was first proposed
by Sakimoto [11], who showed that for finite r, the in-
tegral (9) can be expressed in terms of complete elliptic
integrals of the first, second and third kind [16]

εJM (r)
B

=
π

�
(J − |M |)

√
(a− c)

2xK(q)
− (a− c)E(q)

x2K(q)
+

a

x2

+
[
Π(p1, q)

1 − c
+
Π(p2, q)

1 + c

]
M2

2K(q)�2
(12)

where

q =
b− c

a− c
, p1 =

b− c

1 − c
, p2 =

c− b

1 + c
· (13)

It may be remarked at this stage that this classical theory
of adiabatic invariants does not yet take account of the
quantization of the initial molecular states. It is therefore
necessary to address the problem of semiclassical quanti-
zation of the molecular rotation.
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3 Semiclassical quantization

There is no unique way of describing stationary states in a
semiclassical approximation. Two approaches are usually
followed. The first (and commonest) way of adapting clas-
sical dynamics is to treat the discrete nature of molecular
rotation is the EBK semiclassical quantization (equivalent
to Bohr-Sommerfeld quantization in the case of one degree
of freedom) of the action variables [17,18]. This approach
is adopted by Bates [10] and Sakimoto [11] who assume
that the adiabatic invariants in ion-molecule collisions are
quantized according to:

Iθ =
1
π

θ2∫
θ1

pθdθ

= J − |M | = (nθ + 1/2)� nθ = 0, 1, 2, ... (14)

Iϕ =
1
2π

∮
pϕdϕ = M = nϕ� |nϕ| = 0, 1, 2, ... (15)

A correct spacing of the rotational energies (albeit with
an error in their absolute energy) is obtained. This semi-
classical quantization gives an excellent representation of
highly excited rotational states, but it is less satisfactory
for the ground and low-lying states. In what follows, we
shall designate the rotational states by the quantum num-
bers j, m.

One of the main weaknesses of the EBK semiclassical
quantization becomes apparent if we compare the adia-
batic potentials derived from the classical adiabatic in-
variants with the adiabatic potentials obtained from the
quantum mechanical calculations. For example, in a typ-
ical system such as He+/HCl, the EBK semiclassical adi-
abatic potential corresponding to (J, M) associated with
the ground state (nθ = 0, nϕ = 0) exhibits a weak long
distance activation barrier which hinders the reaction at
very low temperatures. On the other hand, the quantum
adiabatic potential associated with (j = 0, m = 0) [15] ex-
hibits no such barrier and the reaction can proceed rapidly
for all temperatures.

It is clear that the major defect of the EBK quantiza-
tion comes from the attribution of a unique classical an-
gular momentum to each given quantum state. Indeed, it
is well-known from classical trajectory Monte-Carlo meth-
ods [19,20] in ion-Rydberg atom collisions that to obtain
meaningful results, it is necessary to use a distribution
over all classical phase space with a partitioning into bins
corresponding to the quantum states. In the following sec-
tion, we investigate how the partitioning of phase space
can be achieved in an optimal way.

Let us consider a dynamical system with N de-
grees of freedom, described by a Hamiltonian H(p,q)
where (p,q) ≡ (p1, ...pN ; q1, ...qN ) are canonically conju-
gate variables. According to the semiclassical approxima-
tion [21], the number of quantum states with energy less
than E is given by the volume of phase space within the
energy hypersurface divided by (2π�)N

Nsc(E) =
1

(2π�)N

∫
H(p,q)<E

dNp dNq. (16)

For integrable systems, it is always possible to find
a canonical transformation to action angle variables
[9,17,21]

(p,q) ↔ (I,θ) (17)
where

Imin
i < Ii < Imax

i , 0 ≤ θi < 2π, i = 1, 2, ...N. (18)

Since the Hamiltonian function depends then only on the
action variables, (16) can be written as

Nsc(E) =
1

(�)N

∫
H(I)<E

dNI. (19)

Expression (19) suggests that to each quantum state, there
is a corresponding volume of �

N in action space.
At this stage we may remark that the semiclassical

(EBK or tori) quantization [17,21] gives a discrete set of
action variables which correspond to quantum states

I =
(
n +

α

4

)
� (20)

where ni are quantum numbers and αi are the Maslov
indices. This discretization of the action variables corre-
sponds to the approach [10,11].

The procedure followed here is different. Action space
is partitioned into “bins” (mutually exclusive subspaces)
D(n), each of which contains a single point of the type (20)
and has a volume of �

N ; that is to say, the following con-
dition is satisfied

gn ≡ 1
�N

∫
D(n)

dNI = 1. (21)

Of course, even if condition (21) is satisfied there is
no unique way of partitioning phase space and in
many CTMC calculations an empirical approach is often
adopted. In what follows, we propose a way of determin-
ing the most reasonable division of action space. Here we
shall only treat the case of the rigid linear rotor, which
has two degrees of freedom. For completeness, the case of
the rigid symmetric-top rotor (three degrees of freedom)
is given in the appendix.

4 Partitioning of phase space

The Hamiltonian of the free linear rigid rotor, using (4) is
given by

H =
BJ2

�2
=
B

�2

(
p2
θ +

p2
ϕ

sin2 θ

)
(22)

where J, the angular momentum, is a constant of motion.
The generating function for the canonical transformation
to action-angle variables is obtained from the solution of
the Hamilton-Jacobi equation [17]

S(θ, ϕ, J,M) = Jarccos
J cos θ√
J2 −M2

− |M |arccos
|M |cotθ√
J2 −M2

+Mϕ. (23)
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It then follows that the action-angle variables are (J , M ,
θJ , θM ) where J = |J|, M = Jz obey the restrictions

0 ≤ J <∞ (24)
−J ≤M ≤ J. (25)

The EBK quantization conditions read:

J = (j + 1/2)� j = 0, 1, 2, ... (26)
M = m� m = 0,±1,±2, ...± j. (27)

In order to determine the bin boundaries in action space,
we introduce two functions F (m, j, J) and G(j), which,
although not strictly defined, are subject to certain con-
straints. The condition (21) can then be written as

gjm ≡ 1
�2

G(j+1)∫
G(j)

dJ

F (m+1,j,J)∫
F (m,j,J)

dM = 1 (28)

where, because of (24) and (25), we must impose the ad-
ditional constraints

G(0) = 0 (29)

F (−j, j, J) = −J F (j + 1, j, J) = J. (30)

Making the simplest possible assumption that F (m, j, J)
is a linear function of m,

F (m, j, J) = (m− β)A (31)

where β and A are constants (depending on j and J) we
deduce from (30) that

A =
2J

2j + 1
, β =

1
2

(32)

yielding

F (m, j, J) =
(
m− 1

2

)
2J

2j + 1
· (33)

The equation (28) gives

1
�2

G(j+1)∫
G(j)

dJ

(2m+1)J
2j+1∫

(2m−1)J
2j+1

dM =

1
�2

G(j+1)∫
G(j)

2J
2j + 1

dJ =
G2(j + 1) −G2(j)

(2j + 1)�2
= 1. (34)

Taking account of the condition (29), the solution of (34)
in the form of a linear function is

G(j) = j�. (35)

Therefore the boundaries of the binsD(jm) are defined by

j� ≤ J < (j + 1)� (36)

(2m− 1)J
2j + 1

≤M <
(2m+ 1)J

2j + 1
· (37)

With this choice we find the mean values per bin are
given by

J̄2 = (2j + 1)2
�

2

4

[
1 +

1
(2j + 1)2

]
= �

2

[
j(j + 1) +

1
2

]
(38)

J̄ = (j + 1/2)�
[
1 +

1
3(2j + 1)2

]
(39)

M̄ = m�

[
1 +

1
3(2j + 1)2

]
· (40)

The solution (36, 37) is not unique. It is easy to verify
that functions

G(j) = j� (41)

F (m, j, J) =

{
(m+ j)� − J for −j ≤ m ≤ 0
(m− j − 1)� + J for 0 < m ≤ j

(42)

also satisfy (28). The bins D(jm) then correspond to:

j� ≤ J < (j + 1)� (43)

(m+ j)� − J ≤M < (m+ j + 1)� − J

for − j ≤ m < 0
(44)

j� − J ≤M < −j� + J for m = 0 (45)
(m− j − 1)� + J ≤M < (m− j)� + J

for 0 < m ≤ j.
(46)

Instead of (38–40) we now have

J̄2 =




(2j + 1)2
�

2

4

[
1 +

1
3(2j + 1)2

]
=

�
2

[
j(j + 1) +

1
3

]
m �= 0

(2j + 1)2
�

2

4

[
1 +

4j + 3
3(2j + 1)2

]
=

�
2

[
j(j + 1) +

j

3
+

1
2

]
m = 0

(47)

J̄ =




(
j +

1
2

)
� m �= 0

(2j + 1)
�

2

[
1 +

1
3(2j + 1)

]
m = 0

(48)

M̄ = m�. (49)

We may remark that the bin definition of (36, 37) corre-
sponds to that used in CTMC calculations [22] for charge
transfer reactions. To our knowledge, no previous demon-
stration of this result has been given. We may note that
the averaged energy gives (as the EBK semiclassical) the
correct rotational spacing. On the other hand, the bin def-
inition of (43–46) only gives the correct rotational spacing
for the non-zero m levels.
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Table 1. Parameters in atomic units of molecular systems.

System Mass µ Rotational Polarizability Dipole moment

constant B

He+/HCl 6575 4.825 × 10−5 17.75 0.4363

H+
3 /HCN 4922 6.739 × 10−6 17.27 1.1729

5 Applications

To test the validity of the semiclassical partitioning of
phase space, we have carried out a series of calculations
for a number of simple ion-molecule systems with different
B/D ratios. These are assembled in the following Table 1.

We shall not present the results for adiabatic states
(j,m) with j > 2, since there is excellent agreement be-
tween the quantum and EBK semiclassical quantization in
that case for all collision energies. It is only for states with
low quantum numbers j ≤ 2, for which the EBK semiclas-
sical quantization becomes increasingly unreliable as j de-
creases. In the following we shall compare results obtained
by our semiclassical partitioning of action space with both
the quantum and EBK semiclassical quantization.

The first (and most difficult) stage of the calculations
is the determination of the classical adiabatic potential
εJM (r) using equation (12) for a given initial set of classi-
cal J,M . We may note that the quantities {a, b, c, q, p1, p2}
depend on εJM (r) in quite a complex way via the parame-
ters of elliptic integrals. However, these latter can be com-
puted using standard library subroutines [23]. It is found
that an iterative solution of (12) is satisfactory. Besides,
since the solution is known analytically at r → ∞, it is
simplest to begin by using the solution εJM (r) as the first
order approximation to εJM (r − δr). To compute the re-
active cross-section, two approaches are possible. The first
involves making an average over a bin of εJM (r) to yield
a classically averaged adiabatic potential ε̄jm(r)

ε̄jm(r) =
1
�2

∫
Djm

ε̄JM (r)dJ dM (50)

and then to determine the cross-section as in the
ACCSA method. The second is to compute the classi-
cal cross-section σJM and then make an average over the
cross-sections

σjm =
1
�2

∫
Djm

σJMdJ dM. (51)

Both procedures give very similar results. The first pro-
cedure facilitates the comparison with the quantum and
the EBK semiclassical method. We designate by εQjm, the
adiabatic rotational energy of the quantum ACCSA or
SACM methods by εscjm, the EBK semiclassical adiabatic
potential energy used in both [10,11].

We have partitioned action-space in two ways: first ac-
cording to (36, 37) and secondly according to (43–46). The
details of this partition are given in Table 2.

Table 2. Partitioning of action space.

j m Limits Limits of M Limits of M

of J/� according according

to (36, 37) to (43–46)

0 0 (0, 1) (−J, J) (−J, J)

1 −1 (1, 2)

(
−J,−J

3

)
(−J,−J + �)

1 0 (1, 2)

(
−J

3
,
J

3

)
(−J + �, J − �)

1 1 (1, 2)

(
J

3
, J

)
(J − �, J)

2 −2 (2, 3)

(
−J,−3J

5

)
(−J,−J + �)

2 −1 (2, 3)

(
−3J

5
,−J

5

)
(−J + �,−J + 2�)

2 0 (2, 3)

(
−J

5
,
J

5

)
(−J + 2�, J − 2�)

2 1 (2, 3)

(
J

5
,
3J

5

)
(J − 2�, J − �)

2 2 (2, 3)

(
3J

5
, J

)
(J − �, J)

Fig. 1. Adiabatic rotational potential curves (in units of B) as
a function of the reduced ion-molecule distance x (in units of√

D/B) for the (j = 0, m = 0) dissociation limit. The solid line
corresponds to the quantum mechanical (ACCSA) method,
the dashed line to the adiabatic invariant method with EBK
quantification. The crosses designate the adiabatic invariant
averaged semi-classical methods with action space partitioned
according to (36, 37) or (43, 45).

6 Results and discussion

Typical results of the adiabatic potentials are presented
in Figures 1, 2, 3 for j = 0, 1, 2 (for all possible values
of m), where a comparison is made of ε̄jm(r), εQjm and
εscjm. While there is excellent agreement for all values of x
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Fig. 2. Adiabatic rotational potential curves (in units of B) as
a function of the reduced ion-molecule distance x (in units of√

D/B) for the (j = 1, m = 0) and (j = 1, m = 1) dissociation
limits. The solid and dashed lines are as in Figure 1. The crosses
and circles designate the adiabatic invariant averaged semi-
classical methods, the crosses with action space partitioned
according to (36, 37), the circles with action space partitioned
according to (43–46).

Fig. 3. Adiabatic rotational potential curves (in units of B)
as a function of the reduced ion-molecule distance x (in units

of
√

D/B) for the (j = 2, m = 0), (j = 2, m = 1) and (j = 2,
m = 2) dissociation limits. The solid and dashed lines, the
crosses and circles are as in Figure 2.

between our calculated ε̄jm(r) and εQjm, there are very sig-
nificant differences with εscjm. This difference is especially
striking for the j = 0, m = 0 where the EBK semiclas-
sical potential exhibits a repulsive barrier around x = 1,
which does not exist in ε̄jm(r) and εQjm. This explains the
failure of the EBK semiclassical method at very low tem-
peratures where the reaction is dominated by molecules
in their ground rotational state. Similar discrepancies also

occur for j = 1 and 2, especially when m = 0, although
the consequences on the cross-sections are not so dramatic
as for ground state molecules.

Cross-sections are computed (as in the ACCSA and
SACM methods) according to the Langevin capture
model, in which it is assumed that a reaction occurs if
the impact parameter is smaller than the critical value
bc for which orbiting occurs. The conditions for orbiting
(ṙ = 0) are given by

E =
Eb2c
r2max

+ Vjm(rmax) (52)

where Vjm(r) designates the adiabatic potential ε̄jm(r),
εQjm or εscjm and rmax is determined by

2Eb2c
r3max

=
(

dVjm(r)
dr

)
r=rmax

· (53)

In the case of the adiabatic potentials ε̄jm(r) and εscjm, the
derivative of the potential required in (53) can easily be
derived from relation (12)

dVjm
dx

= 2x−3 [(a− c)E(q)/K(q) − a] · (54)

Rather than compute the critical orbiting parameter bc
for a given energy, it is more convenient to generate an
array of (bc, E) from an arbitrary set of values of rmax. It is
then straightforward to obtain by inverse interpolation the
value of bc (and consequently the cross-section σjm(E) =
πb2c) for any given E. The energy range covered by this
investigation lies in the interval [0.01B, 250B]. The rate
constants k(T ) are obtained by averaging over a thermal
(Maxwellian) distribution of the reactants.

The reactive cross-sections

Qj(E) =
1

2j + 1

j∑
m=−j

σjm(E) (55)

for an ion-dipole system are presented in Figure 4. As in
most previous publications, the cross-sections presented
in Figure 4 give the ratio of the calculated value to the
Langevin isotropic value obtained by taking account of the
dipole polarizability term in the potential (but neglecting
the anisotropic contribution). This scaling procedure al-
lows us to plot the cross-sections of all ion-dipole systems
on one single curve. The most striking results are for j = 0
and j = 1. As we have already remarked in our discussion
of the adiabatic potentials, the existence of the long range
activation barrier in the EBK semiclassical potential leads
to negligibly small reaction rates when E/B < 1. On the
other hand, our partitioning of classical action-space into
quantum bins yields cross-section in excellent agreement
with the quantum calculations for all j. There is no sig-
nificant difference between the two types of partitioning
action space.

The calculated rate constants for the system He+/HCl
(Fig. 5) and H+

3 /HCN (Fig. 6) also show that, even after
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Fig. 4. Calculated (state selective) reactive cross-sections
Qj(E), (j = 0, 1 and 2) scaled with the Langevin cross-section
QL(E), for an ion-dipole system as a function of energy (in
units of B). The solid and dashed lines, the crosses and circles
are as in Figure 2.

Fig. 5. Calculated (state selective) reactive rate constants
kj(T ), (j = 0, 1 and 2) scaled with the Langevin rate con-
stant kL for the He+/HCl system as a function of tempera-
ture (in units of K). The solid and dashed lines are as in Fig-
ure 2. The crosses designate the adiabatic invariant averaged
semi-classical methods with action space partitioned according
to (36, 37).

thermal averaging, the EBK semiclassical method is not
satisfactory at low temperatures. This is especially true
of molecules with large rotational constants like HCl,
where the EBK semi-classical results are only reliable for
T > 50 K. On the other hand, for molecules with small
rotation constants (for example HCN), the EBK semi-
classical method is satisfactory for temperatures down to
about 10 K.

Fig. 6. Ratio of calculated (state averaged) reactive rate con-
stant to Langevin reactive rate constant for the H3+/HCN sys-
tem as a function of temperature (in units of K). The dashed
lines are as in Figure 5, while the circles designate adiabatic
invariant averaged semiclassical results.

7 Conclusion

The main conclusion of this work is that the semi-classical
adiabatic invariance method is only satisfactory provided
the molecular rotation is partitioned into quantum bins
in action space. Agreement with quantum calculations is
excellent (both for the adiabatic potentials and the reac-
tion cross-sections) for all values of the quantum number
and at all collision energies. This is in contrast to the
EBK semiclassical method, which fails for low quantum
numbers.

Our semiclassical quantization method of phase space
should have applications to more general types of classical
trajectory calculations (such as CTMC) involving state-
to-state reactions.

T.G. acknowledges support of this work by the Ministry of Sci-
ence, Technology and Development of the Republic of Serbia,
through project N◦ 1470.

Appendix: Partitioning of phase space
for a symmetric top rotor

The Hamiltonian of the free symmetric rigid rotor is
given by

H = B(J2
x + J2

y ) + CJ2
z = BJ2 − (B − C)J2

z (56)

= B

[
p2
θ +

p2
ψ + p2

ϕ − 2pϕpψ cos θ

sin2 θ

]2

− (B − C)p2
ψ

(57)

where Jx,y,z are the projections of the angular momentum
on the body fixed axis and {ϕ, θ, ψ} are the Euler angles
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specifying the orientation of the molecule with respect to a
space-fixed axis. The canonical transformation to action-
angle variables is given by Augustin and Millar [24] and
Child [17] from which it is deduced that the action-angle
variables are {J,M,K, θJ , θM , θK}, where K = Jz and
M = Jz′ , the projection of J on the space-fixed axis with
the following constraints

0 ≤ J <∞ (58)
−J ≤M ≤ J (59)
−J ≤ K ≤ J. (60)

The EBK semiclassical quantization is as follows

J =
(
j +

1
2

)
� j = 0, 1, 2, ... (61)

M = m�, m = 0,±1,±2, ...± j (62)
K = k�, k = 0,±1,±2, ...± j. (63)

In order to determine the bin size, we introduce three func-
tions F1(m, j, J), F2(k, j, J) and G(j). The condition (21)
can then be written as

gjmk ≡ 1
�3

G(j+1)∫
G(j)

dJ

F1(m+1;j,J)∫
F1(m,j,J)

dM

F2(k+1;j,J)∫
F2(k,j,J)

dK = 1 (64)

with the additional conditions

G(0) = 0 (65)
F1(−j, j, J) = −J, F1(j + 1, j, J) = J (66)
F2(−j, j, J) = −J, F2(j + 1, j, J) = J. (67)

As for the case of the linear rotor, it is easily deduced
from conditions of (65) and (66) (and assuming a linear
dependence in m) that

F1(m, j, J) =
(2m− 1)J

2j + 1
(68)

F2(k, j, J) =
(2k − 1)J

2j + 1
· (69)

Substitution of (67) and (68) in (63) gives

G3(j + 1) −G3(j)
3(2j + 1)2�3

=
1
4
· (70)

Taking account of (64) we can try the polynomial solution

G3(j) = Aj(j − γ)(j − δ)�3. (71)

Substitution of (70) in (69) gives

A = 1, γ = 1/2, δ = −1/2. (72)

So that we have

G(j) =
[
(2j − 1)j(2j + 1)

4

]1/3
�. (73)

The bins D(j, k,m) are then given by

[
(2j − 1)j(2j + 1)

4

]1/3
� ≤ J

≤
[
(2j + 1)(j + 1)(2j + 3)

4

]1/3
�

(74)
(2m− 1)J

2j + 1
≤M ≤ (2m+ 1)J

2j + 1
(75)

(2k − 1)J
2j + 1

≤ K ≤ (2k + 1)J
2j + 1

· (76)

The mean values per bin are

J̄2 =
�

2

21/310(2j + 1)1/3

×
[
(j + 1)5/3(2j + 3)5/3 − j5/3(2j − 1)5/3

]
(77)

K̄2 =
22/3(12k2 + 1)�2

60(2j + 1)7/3

×
[
(j + 1)5/3(2j + 3)5/3 − j5/3(2j − 1)5/3

]
· (78)

For large values of j, (76) and (77) behave as

J̄2 ≈
(
j +

1
2

)2

�
2

[
1 +

1
(2j + 1)2

+ ...

]
(79)

K̄2 ≈
(
k2 +

1
12

)
�

2

[
1 +

1
(2j + 1)2

+ ...

]
· (80)

By analogy with the alternative solution (50–53) for the
linear rotor, we might try the second partition

j� ≤ J < (j + 1)� (81)




(m+ j)� − J ≤M < (m+ j + 1)� − J for−j≤m<0
j� ≤M < −j� + J for m = 0
(m− j − 1)� + J ≤M < (m− j)� + J for 0<m≤j

(82)


(k + j)� − J ≤ K < (k + j + 1)� − J for−j≤k<0
j� ≤ K < −j� + J for k = 0
(k − j − 1)� + J ≤ K < (k − j)� + J for 0<k≤j

.

(83)
However (80–82) do not satisfy the condition (63). One
finds that

gjmk =




1 for k �= 0 and m �= 0
4
3

for k = 0 and m = 0
. (84)

So the bins for {j,m = 0, k = 0} have too large a statisti-
cal weight. Only the solution (73–75) should therefore be
retained.
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